CHAPTER 7. + ˆ δ. (1 nopc) + ˆ β1. =.157, so the new intercept is = The coefficient on nopc is.157.

Size: px
Start display at page:

Download "CHAPTER 7. + ˆ δ. (1 nopc) + ˆ β1. =.157, so the new intercept is = The coefficient on nopc is.157."

Transcription

1 CHAPTER 7 SOLUTIONS TO PROBLEMS 7. (i) The coefficient on male is 87.75, so a man is estimated to sleep almost one and one-half hours more per week than a comparable woman. Further, t male = 87.75/ , which is close to the % critical value against a two-sided alternative (about 2.58). Thus, the evidence for a gender differential is fairly strong. (ii) The t statistic on totwrk is.63/.8 9.6, which is very statistically significant. The coefficient implies that one more hour of work (6 minutes) is associated with.63(6) 9.8 minutes less sleep. 2 (iii) To obtain R r, the R-squared from the restricted regression, we need to estimate the model without age and age 2. When age and age 2 are both in the model, age has no effect only if the parameters on both terms are zero. 7.3 (i) The t statistic on hsize 2 is over four in absolute value, so there is very strong evidence that it belongs in the equation. We obtain this by finding the turnaround point; this is the value of hsize that maximizes sat ˆ (other things fixed): 9.3/(2 2.9) 4.4. Because hsize is measured in hundreds, the optimal size of graduating class is about 44. (ii) This is given by the coefficient on female (since black = ): nonblack females have SAT scores about 45 points lower than nonblack males. The t statistic is about.5, so the difference is very statistically significant. (The very large sample size certainly contributes to the statistical significance.) (iii) Because female =, the coefficient on black implies that a black male has an estimated SAT score almost 7 points less than a comparable nonblack male. The t statistic is over 3 in absolute value, so we easily reject the hypothesis that there is no ceteris paribus difference. (iv) We plug in black =, female = for black females and black = and female = for nonblack females. The difference is therefore = 7.5. Because the estimate depends on two coefficients, we cannot construct a t statistic from the information given. The easiest approach is to define dummy variables for three of the four race/gender categories and choose nonblack females as the base group. We can then obtain the t statistic we want as the coefficient on the black female dummy variable. 7.5 (i) Following the hint, colgpa = ˆ β + ˆ δ ( nopc) + ˆ β hsgpa + ˆ β2 ACT = ( ˆ β + ˆ δ ) ˆ δ nopc + ˆ β hsgpa + ˆ β2 ACT. For the specific estimates in equation (7.6), ˆ β =.26 and ˆ δ =.57, so the new intercept is =.47. The coefficient on nopc is

2 (ii) Nothing happens to the R-squared. Using nopc in place of PC is simply a different way of including the same information on PC ownership. (iii) It makes no sense to include both dummy variables in the regression: we cannot hold nopc fixed while changing PC. We have only two groups based on PC ownership so, in addition to the overall intercept, we need only to include one dummy variable. If we try to include both along with an intercept we have perfect multicollinearity (the dummy variable trap). 7.7 (i) Write the population model underlying (7.29) as inlf = β + β nwifeinc + β2 educ + β3 exper + β 4 exper 2 + β5 age + β6 kidslt6 + β7 kidsage6 + u, plug in inlf = outlf, and rearrange: or outlf = β + β nwifeinc + β2 educ + β3 exper + β 4 exper 2 + β5 age + β6 kidslt6 + β7 kidsage6 + u, outlf = ( β ) β nwifeinc β2 educ β3 exper β4 exper 2 β5 age β6 kidslt6 β7 kidsage6 u, The new error term, u, has the same properties as u. From this we see that if we regress outlf on all of the independent variables in (7.29), the new intercept is.586 =.44 and each slope coefficient takes on the opposite sign from when inlf is the dependent variable. For example, the new coefficient on educ is.38 while the new coefficient on kidslt6 is.262. (ii) The standard errors will not change. In the case of the slopes, changing the signs of the estimators does not change their variances, and therefore the standard errors are unchanged (but the t statistics change sign). Also, Var( ˆ β ) = Var( ˆ β ), so the standard error of the intercept is the same as before. (iii) We know that changing the units of measurement of independent variables, or entering qualitative information using different sets of dummy variables, does not change the R-squared. But here we are changing the dependent variable. Nevertheless, the R-squareds from the regressions are still the same. To see this, part (i) suggests that the squared residuals will be identical in the two regressions. For each i the error in the equation for outlf i is just the negative of the error in the other equation for inlf i, and the same is true of the residuals. Therefore, the SSRs are the same. Further, in this case, the total sum of squares are the same. For outlf we have SST = n n 2 2 ( outlfi outlf ) = [( inlfi) ( inlf )] i= i= 2 2 = ( inlfi + inlf ) = ( inlfi inlf ), n i= i= n 35

3 which is the SST for inlf. Because R 2 = SSR/SST, the R-squared is the same in the two regressions. 7.9 (i) Plugging in u = and d = gives f ( z) = ( β + δ ) + ( β + δ ) z. * * * * * (ii) Setting f( z ) = f( z ) gives β + βz = ( β + δ) + ( β+ δ) z or = δ + δz. * * Therefore, provided δ, we have z = δ / δ. Clearly, z is positive if and only if δ / δ is negative, which means δ and δ must have opposite signs. (iii) Using part (ii) we have * totcoll =.357 /.3 =.9 years. (iv) The estimated years of college where women catch up to men is much too high to be practically relevant. While the estimated coefficient on female totcoll shows that the gap is reduced at higher levels of college, it is never closed not even close. In fact, at four years of college, the difference in predicted log wage is still (4) =.237, or about 2.% less for women. SOLUTIONS TO COMPUTER EXERCISES C7. (i) The estimated equation is colgpa = PC +.45 hsgpa +.77 ACT.38 mothcoll (.34) (.59) (.94) (.7) (.63) +.48 fathcoll (.63) n = 4, R 2 =.222. The estimated effect of PC is hardly changed from equation (7.6), and it is still very significant, with t pc (ii) The F test for joint significance of mothcoll and fathcoll, with 2 and 35 df, is about.24 with p-value.78; these variables are jointly very insignificant. It is not surprising the estimates on the other coefficients do not change much when mothcoll and fathcoll are added to the regression. (iii) When hsgpa 2 is added to the regression, its coefficient is about.337 and its t statistic is about.56. (The coefficient on hsgpa is about.83.) This is a borderline case. The quadratic in hsgpa has a U-shape, and it only turns up at about hsgpa * = 2.68, which is hard to interpret. The coefficient of main interest, on PC, falls to about.4 but is still significant. Adding hsgpa 2 is a simple robustness check of the main finding. 36

4 C7.3 (i) H : β 3 =. Using the data in MLB.RAW gives ˆ β 3.254, se( ˆ β 3 ).3. The t statistic is about.94, which gives a p-value against a two-sided alternative of just over.5. Therefore, we would reject H at just about the 5% significance level. Controlling for the performance and experience variables, the estimated salary differential between catchers and outfielders is huge, on the order of [exp(.254) ] 28.9% [using equation (7.)]. (ii) This is a joint null, H : β 9 =, β =,, β 3 =. The F statistic, with 5 and 339 df, is about.78, and its p-value is about.7. Thus, we cannot reject H at the % level. (iii) Parts (i) and (ii) are roughly consistent. The evidence against the joint null in part (ii) is weaker because we are testing, along with the marginally significant catcher, several other insignificant variables (especially thrdbase and shrtstop, which has absolute t statistics well below one). C7.5 The estimated equation is log( salary ) = log(sales) +.67 roe.226 rosneg (.29) (.34) (.4) (.9) n = 29, R 2 =.297, 2 R =.286. The coefficient on rosneg implies that if the CEO s firm had a negative return on its stock over the 988 to 99 period, the CEO salary was predicted to be about 22.6% lower, for given levels of sales and roe. The t statistic is about 2.7, which is significant at the 5% level against a twosided alternative. C7.7 (i) When educ = 2.5, the approximate proportionate difference in estimated wage between women and men is (2.5) =.297. When educ =, the difference is.227. So the differential at 2.5 years of education is about 7 percentage points greater. (ii) We can write the model underlying (7.8) as log(wage) = β + δ female + β educ + δ female educ + other factors = β + ( δ + 2.5δ ) female + β educ + δ female (educ 2.5) + other factors β + θ female + β educ + δ female (educ 2.5) + other factors, 37

5 where θ δ + 2.5δ is the gender differential at 2.5 years of education. When we run this regression we obtain about.294 as the coefficient on female (which differs from.297 due to rounding error). Its standard error is about.36. (iii) The t statistic on female from part (ii) is about 8.7, which is very significant. This is because we are estimating the gender differential at a reasonable number of years of education, 2.5, which is close to the average. In equation (7.8), the coefficient on female is the gender differential when educ =. There are no people of either gender with close to zero years of education, and so we cannot hope nor do we want to to estimate the gender differential at educ =. C7.9 (i) About.392, or 39.2%. (ii) The estimated equation is e 4k = inc.62 inc age.3 age 2.35 male (.8) (.6) (.5) (.39) (.5) (.2) n = 9,275, R 2 =.94. (iii) 4(k) eligibility clearly depends on income and age in part (ii). Each of the four terms involving inc and age have very significant t statistics. On the other hand, once income and age are controlled for, there seems to be no difference in eligibility by gender. The coefficient on male is very small at given income and age, males are estimated to have a.35 lower probability of being 4(k) eligible and it has a very small t statistic. (iv) Somewhat surprisingly, out of 9,275 fitted values, none is outside the interval [,]. The smallest fitted value is about.3 and the largest is about.697. This means one theoretical problem with the LPM the possibility of generating silly probability estimates does not materialize in this application. (v) Using the given rule, 2,46 families are predicted to be eligible for a 4(k) plan. (vi) Of the 5,638 families actually ineligible for a 4(k) plan, about 8.7 are correctly predicted not to be eligible. Of the 3,637 families actually eligible, only 39.3 percent are correctly predicted to be eligible. (vii) The overall percent correctly predicted is a weighted average of the two percentages obtained in part (vi). As we saw there, the model does a good job of predicting when a family is ineligible. Unfortunately, it does less well predicting correctly less than 4% of the time in predicting that a family is eligible for a 4(k). (viii) The estimated equation is e 4k = inc.6 inc age.3 age 2 38

6 (.8) (.6) (.5) (.39) (.5).38 male +.98 pira (.2) (.22) n = 9,275, R 2 =.95. The coefficient on pira means that, other things equal, IRA ownership is associated with about a.2 higher probability of being eligible for a 4(k) plan. However, the t statistic is only about.62, which gives a two-sided p-value =.5. So pira is not significant at the % level against a two-sided alternative. C7. (i) The average is 9.72, the standard deviation is , the smallest value is 52.32, and the largest value is, Remember, these are in thousands of dollars. (ii) This can be easily done by regressing nettfa on e4k and doing a t test on ˆe4k β ; the estimate is the average difference in nettfa for those eligible for a 4(k) and those not eligible. Using the 9,275 observations gives ˆ β e4k = and te4k = 4.. Therefore, we strongly reject the null hypothesis that there is no difference in the averages. The coefficient implies that, on average, a family eligible for a 4(k) plan has $8,858 more on net total financial assets. (iii) The equation estimated by OLS is nettfa = e4k.278 inc +.3 inc age age 2 n = 9,275, R 2 =.22 (9.96) (.277) (.75) (.6) (.483) (.55) Now, holding income and age fixed, a 4(k)-eligible family is estimated to have $9,75 more in wealth than a non-eligible family. This is just more than half of what is obtained by simply comparing averages. (iv) Only the interaction e4k (age 4) is significant. Its coefficient is.654 (t = 4.98). It shows that the effect of 4(k) eligibility on financial wealth increases with age. Another way to think about it is that age has a stronger positive effect on nettfa for those with 4(k) eligibility. The coefficient on e4k (age 4) 2 is.38 (t statistic =.33), so we could drop this term. (v) The effect of e4k in part (iii) is the same for all ages, For the regression in part (iv), the coefficient on e4k from part (iv) is about 9.96, which is the effect at the average age, age = 4. Including the interactions increases the estimated effect of e4k, but only by $255. If we evaluate the effect in part (iv) at a wide range of ages, we would see more dramatic differences. (vi) I chose fsize as the base group. The estimated equation is 39

7 nettfa = e4k.24 inc +. inc age +.29 age 2 (.2) (.278) (.75) (.6) (.483) (.55).859 fsize fsize fsize fsize5 (.88) (.877) (.868) (2.) n = 9,275, R 2 =.24, SSR = 3,25,27.5 The F statistic for joint significance of the four family size dummies is about With 4 and 9,265 df, this gives p-value =.2. So the family size dummies are jointly significant. (vii) The SSR for the restricted model is from part (vi): SSR r = 3,25,27.5. The SSR for the unrestricted model is obtained by adding the SSRs for the five separate family size regressions. I get SSR ur = 29,985,4. The Chow statistic is F = [(3,25, ,985,4)/ 29,985,4]*(9245/2) With 2 and 9,245 df, the p-value is essentially zero. In this case, there is strong evidence that the slopes change across family size. Allowing for intercept changes alone is not sufficient. (If you look at the individual regressions, you will see that the signs on the income variables actually change across family size.) C7.3 (i) 42/ (ii) The OLS estimates of the LPM are ecobuy = ecoprc +.79 regprc +.55 faminc +.24 hhsize (.65) (.9) (.32) (.53) (.3) n = 66, R 2 = educ.5 age (.8) (.25) If ecoprc increases by, say, cents (.), then the probability of buying eco-labeled apples falls by about.8. If regprc increases by cents, the probability of buying eco-labeled apples increases by about.72. (Of course, we are assuming that the probabilities are not close to the boundaries of zero and one, respectively.) (iii) The F test, with 4 and 653 df, is 4.43, with p-value =.5. Thus, based on the usual F test, the four non-price variables are jointly very significant. Of the four variables, educ appears to have the most important effect. For example, a difference of four years of education implies an increase of.25(4) =. in the estimated probability of buying eco-labeled apples. This suggests that more highly educated people are more open to buying produce that is environmentally friendly, which is perhaps expected. Household size (hhsize) also has an effect. Comparing a couple with two children to one that has no children other factors equal the couple with two children has a.48 higher probability of buying eco-labeled apples. 4

8 (iv) The model with log(faminc) fits the data slightly better: the R-squared increases to about.2. (We would not expect a large increase in R-squared from a simple change in the functional form.) The coefficient on log(faminc) is about.45 (t =.55). If log(faminc) increases by., which means roughly a % increase in faminc, then P(ecobuy = ) is estimated to increase by about.45, a pretty small effect. (v) The fitted probabilities range from about.85 to.5, so none are negative. There are two fitted probabilities above, which is not a source of concern with 66 observations. (vi) Using the standard prediction rule predict one when.5 i ecobuy and zero otherwise gives the fraction correctly predicted for ecobuy = as 2/248.4, so about 4.%. For ecobuy =, the fraction correctly predicted is 34/42.825, or 82.5%. With the usual prediction rule, the model does a much better job predicting the decision to buy eco-labeled apples. (The overall percent correctly predicted is about 67%.) 4

Answer Key: Problem Set 5

Answer Key: Problem Set 5 : Problem Set 5. Let nopc be a dummy variable equal to one if the student does not own a PC, and zero otherwise. i. If nopc is used instead of PC in the model of: colgpa = β + δ PC + β hsgpa + β ACT +

More information

Solutions to Problem Set 5 (Due November 22) Maximum number of points for Problem set 5 is: 220. Problem 7.3

Solutions to Problem Set 5 (Due November 22) Maximum number of points for Problem set 5 is: 220. Problem 7.3 Solutions to Problem Set 5 (Due November 22) EC 228 02, Fall 2010 Prof. Baum, Ms Hristakeva Maximum number of points for Problem set 5 is: 220 Problem 7.3 (i) (5 points) The t statistic on hsize 2 is over

More information

ECON 482 / WH Hong Binary or Dummy Variables 1. Qualitative Information

ECON 482 / WH Hong Binary or Dummy Variables 1. Qualitative Information 1. Qualitative Information Qualitative Information Up to now, we assume that all the variables has quantitative meaning. But often in empirical work, we must incorporate qualitative factor into regression

More information

CHAPTER 4. > 0, where β

CHAPTER 4. > 0, where β CHAPTER 4 SOLUTIONS TO PROBLEMS 4. (i) and (iii) generally cause the t statistics not to have a t distribution under H. Homoskedasticity is one of the CLM assumptions. An important omitted variable violates

More information

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is

5. Let W follow a normal distribution with mean of μ and the variance of 1. Then, the pdf of W is Practice Final Exam Last Name:, First Name:. Please write LEGIBLY. Answer all questions on this exam in the space provided (you may use the back of any page if you need more space). Show all work but do

More information

Answer Key: Problem Set 6

Answer Key: Problem Set 6 : Problem Set 6 1. Consider a linear model to explain monthly beer consumption: beer = + inc + price + educ + female + u 0 1 3 4 E ( u inc, price, educ, female ) = 0 ( u inc price educ female) σ inc var,,,

More information

Solutions to Problem Set 4 (Due November 13) Maximum number of points for Problem set 4 is: 66. Problem C 6.1

Solutions to Problem Set 4 (Due November 13) Maximum number of points for Problem set 4 is: 66. Problem C 6.1 Solutions to Problem Set 4 (Due November 13) EC 228 01, Fall 2013 Prof. Baum, Mr. Lim Maximum number of points for Problem set 4 is: 66 Problem C 6.1 (i) (3 pts.) If the presence of the incinerator depresses

More information

ECO375 Tutorial 4 Wooldridge: Chapter 6 and 7

ECO375 Tutorial 4 Wooldridge: Chapter 6 and 7 ECO375 Tutorial 4 Wooldridge: Chapter 6 and 7 Matt Tudball University of Toronto St. George October 6, 2017 Matt Tudball (University of Toronto) ECO375H1 October 6, 2017 1 / 36 ECO375 Tutorial 4 Welcome

More information

Inference in Regression Analysis

Inference in Regression Analysis ECNS 561 Inference Inference in Regression Analysis Up to this point 1.) OLS is unbiased 2.) OLS is BLUE (best linear unbiased estimator i.e., the variance is smallest among linear unbiased estimators)

More information

Economics Introduction to Econometrics - Fall 2007 Final Exam - Answers

Economics Introduction to Econometrics - Fall 2007 Final Exam - Answers Student Name: Economics 4818 - Introduction to Econometrics - Fall 2007 Final Exam - Answers SHOW ALL WORK! Evaluation: Problems: 3, 4C, 5C and 5F are worth 4 points. All other questions are worth 3 points.

More information

Chapter 9: The Regression Model with Qualitative Information: Binary Variables (Dummies)

Chapter 9: The Regression Model with Qualitative Information: Binary Variables (Dummies) Chapter 9: The Regression Model with Qualitative Information: Binary Variables (Dummies) Statistics and Introduction to Econometrics M. Angeles Carnero Departamento de Fundamentos del Análisis Económico

More information

Regression with Qualitative Information. Part VI. Regression with Qualitative Information

Regression with Qualitative Information. Part VI. Regression with Qualitative Information Part VI Regression with Qualitative Information As of Oct 17, 2017 1 Regression with Qualitative Information Single Dummy Independent Variable Multiple Categories Ordinal Information Interaction Involving

More information

Making sense of Econometrics: Basics

Making sense of Econometrics: Basics Making sense of Econometrics: Basics Lecture 4: Qualitative influences and Heteroskedasticity Egypt Scholars Economic Society November 1, 2014 Assignment & feedback enter classroom at http://b.socrative.com/login/student/

More information

ECON Interactions and Dummies

ECON Interactions and Dummies ECON 351 - Interactions and Dummies Maggie Jones 1 / 25 Readings Chapter 6: Section on Models with Interaction Terms Chapter 7: Full Chapter 2 / 25 Interaction Terms with Continuous Variables In some regressions

More information

Multiple Regression Analysis: Inference MULTIPLE REGRESSION ANALYSIS: INFERENCE. Sampling Distributions of OLS Estimators

Multiple Regression Analysis: Inference MULTIPLE REGRESSION ANALYSIS: INFERENCE. Sampling Distributions of OLS Estimators 1 2 Multiple Regression Analysis: Inference MULTIPLE REGRESSION ANALYSIS: INFERENCE Hüseyin Taştan 1 1 Yıldız Technical University Department of Economics These presentation notes are based on Introductory

More information

In Chapter 2, we learned how to use simple regression analysis to explain a dependent

In Chapter 2, we learned how to use simple regression analysis to explain a dependent 3 Multiple Regression Analysis: Estimation In Chapter 2, we learned how to use simple regression analysis to explain a dependent variable, y, as a function of a single independent variable, x. The primary

More information

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc.

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc. Notes on regression analysis 1. Basics in regression analysis key concepts (actual implementation is more complicated) A. Collect data B. Plot data on graph, draw a line through the middle of the scatter

More information

ECNS 561 Topics in Multiple Regression Analysis

ECNS 561 Topics in Multiple Regression Analysis ECNS 561 Topics in Multiple Regression Analysis Scaling Data For the simple regression case, we already discussed the effects of changing the units of measurement Nothing different here Coefficients, SEs,

More information

In Chapter 2, we learned how to use simple regression analysis to explain a dependent

In Chapter 2, we learned how to use simple regression analysis to explain a dependent C h a p t e r Three Multiple Regression Analysis: Estimation In Chapter 2, we learned how to use simple regression analysis to explain a dependent variable, y, as a function of a single independent variable,

More information

Problem C7.10. points = exper.072 exper guard forward (1.18) (.33) (.024) (1.00) (1.00)

Problem C7.10. points = exper.072 exper guard forward (1.18) (.33) (.024) (1.00) (1.00) BOSTON COLLEGE Department of Economics EC 228 02 Econometric Methods Fall 2009, Prof. Baum, Ms. Phillips (TA), Ms. Pumphrey (grader) Problem Set 5 Due Tuesday 10 November 2009 Total Points Possible: 160

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inference 0 Assumptions of the Classical Linear Model (CLM)! So far, we know: 1. The mean and variance of the OLS estimators

More information

Econometrics I Lecture 7: Dummy Variables

Econometrics I Lecture 7: Dummy Variables Econometrics I Lecture 7: Dummy Variables Mohammad Vesal Graduate School of Management and Economics Sharif University of Technology 44716 Fall 1397 1 / 27 Introduction Dummy variable: d i is a dummy variable

More information

Lab 10 - Binary Variables

Lab 10 - Binary Variables Lab 10 - Binary Variables Spring 2017 Contents 1 Introduction 1 2 SLR on a Dummy 2 3 MLR with binary independent variables 3 3.1 MLR with a Dummy: different intercepts, same slope................. 4 3.2

More information

Multiple Linear Regression CIVL 7012/8012

Multiple Linear Regression CIVL 7012/8012 Multiple Linear Regression CIVL 7012/8012 2 Multiple Regression Analysis (MLR) Allows us to explicitly control for many factors those simultaneously affect the dependent variable This is important for

More information

Problem 4.1. Problem 4.3

Problem 4.1. Problem 4.3 BOSTON COLLEGE Department of Economics EC 228 01 Econometric Methods Fall 2008, Prof. Baum, Ms. Phillips (tutor), Mr. Dmitriev (grader) Problem Set 3 Due at classtime, Thursday 14 Oct 2008 Problem 4.1

More information

Exercise Sheet 4 Instrumental Variables and Two Stage Least Squares Estimation

Exercise Sheet 4 Instrumental Variables and Two Stage Least Squares Estimation Exercise Sheet 4 Instrumental Variables and Two Stage Least Squares Estimation ECONOMETRICS I. UC3M 1. [W 15.1] Consider a simple model to estimate the e ect of personal computer (P C) ownership on the

More information

Problem Set # 1. Master in Business and Quantitative Methods

Problem Set # 1. Master in Business and Quantitative Methods Problem Set # 1 Master in Business and Quantitative Methods Contents 0.1 Problems on endogeneity of the regressors........... 2 0.2 Lab exercises on endogeneity of the regressors......... 4 1 0.1 Problems

More information

Simple Regression Model. January 24, 2011

Simple Regression Model. January 24, 2011 Simple Regression Model January 24, 2011 Outline Descriptive Analysis Causal Estimation Forecasting Regression Model We are actually going to derive the linear regression model in 3 very different ways

More information

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity LECTURE 10 Introduction to Econometrics Multicollinearity & Heteroskedasticity November 22, 2016 1 / 23 ON PREVIOUS LECTURES We discussed the specification of a regression equation Specification consists

More information

Problem 13.5 (10 points)

Problem 13.5 (10 points) BOSTON COLLEGE Department of Economics EC 327 Financial Econometrics Spring 2013, Prof. Baum, Mr. Park Problem Set 2 Due Monday 25 February 2013 Total Points Possible: 210 points Problem 13.5 (10 points)

More information

Final Exam - Solutions

Final Exam - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis March 17, 2010 Instructor: John Parman Final Exam - Solutions You have until 12:30pm to complete this exam. Please remember to put your

More information

Regression Models REVISED TEACHING SUGGESTIONS ALTERNATIVE EXAMPLES

Regression Models REVISED TEACHING SUGGESTIONS ALTERNATIVE EXAMPLES M04_REND6289_10_IM_C04.QXD 5/7/08 2:49 PM Page 46 4 C H A P T E R Regression Models TEACHING SUGGESTIONS Teaching Suggestion 4.1: Which Is the Independent Variable? We find that students are often confused

More information

Regression #8: Loose Ends

Regression #8: Loose Ends Regression #8: Loose Ends Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #8 1 / 30 In this lecture we investigate a variety of topics that you are probably familiar with, but need to touch

More information

Data Analysis 1 LINEAR REGRESSION. Chapter 03

Data Analysis 1 LINEAR REGRESSION. Chapter 03 Data Analysis 1 LINEAR REGRESSION Chapter 03 Data Analysis 2 Outline The Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression Other Considerations in Regression Model Qualitative

More information

ECNS 561 Multiple Regression Analysis

ECNS 561 Multiple Regression Analysis ECNS 561 Multiple Regression Analysis Model with Two Independent Variables Consider the following model Crime i = β 0 + β 1 Educ i + β 2 [what else would we like to control for?] + ε i Here, we are taking

More information

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47

ECON2228 Notes 2. Christopher F Baum. Boston College Economics. cfb (BC Econ) ECON2228 Notes / 47 ECON2228 Notes 2 Christopher F Baum Boston College Economics 2014 2015 cfb (BC Econ) ECON2228 Notes 2 2014 2015 1 / 47 Chapter 2: The simple regression model Most of this course will be concerned with

More information

Final Exam - Solutions

Final Exam - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis March 19, 2010 Instructor: John Parman Final Exam - Solutions You have until 5:30pm to complete this exam. Please remember to put your

More information

x i = 1 yi 2 = 55 with N = 30. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

x i = 1 yi 2 = 55 with N = 30. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations. Exercises for the course of Econometrics Introduction 1. () A researcher is using data for a sample of 30 observations to investigate the relationship between some dependent variable y i and independent

More information

ISQS 5349 Final Exam, Spring 2017.

ISQS 5349 Final Exam, Spring 2017. ISQS 5349 Final Exam, Spring 7. Instructions: Put all answers on paper other than this exam. If you do not have paper, some will be provided to you. The exam is OPEN BOOKS, OPEN NOTES, but NO ELECTRONIC

More information

Econometrics II. Seppo Pynnönen. Spring Department of Mathematics and Statistics, University of Vaasa, Finland

Econometrics II. Seppo Pynnönen. Spring Department of Mathematics and Statistics, University of Vaasa, Finland Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2018 Part III Limited Dependent Variable Models As of Jan 30, 2017 1 Background 2 Binary Dependent Variable The Linear Probability

More information

Solutions to Problem Set 5 (Due December 4) Maximum number of points for Problem set 5 is: 62. Problem 9.C3

Solutions to Problem Set 5 (Due December 4) Maximum number of points for Problem set 5 is: 62. Problem 9.C3 Solutions to Problem Set 5 (Due December 4) EC 228 01, Fall 2013 Prof. Baum, Mr. Lim Maximum number of points for Problem set 5 is: 62 Problem 9.C3 (i) (1 pt) If the grants were awarded to firms based

More information

Inference in Regression Model

Inference in Regression Model Inference in Regression Model Christopher Taber Department of Economics University of Wisconsin-Madison March 25, 2009 Outline 1 Final Step of Classical Linear Regression Model 2 Confidence Intervals 3

More information

Regression Models. Chapter 4. Introduction. Introduction. Introduction

Regression Models. Chapter 4. Introduction. Introduction. Introduction Chapter 4 Regression Models Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna 008 Prentice-Hall, Inc. Introduction Regression analysis is a very valuable tool for a manager

More information

Solutions to Problem Set 6 (Due December 8) Maximum number of points for Problem set 8 is: 220. Problem 10.6

Solutions to Problem Set 6 (Due December 8) Maximum number of points for Problem set 8 is: 220. Problem 10.6 Solutions to Problem Set 6 (Due December 8) EC 228 02, Fall 2010 Prof. Baum, Ms Hristakeva Maximum number of points for Problem set 8 is: 220 Problem 10.6 (i) (5 pts) Given the formula for δ j = γ 0 +

More information

Chapter 14 Simple Linear Regression (A)

Chapter 14 Simple Linear Regression (A) Chapter 14 Simple Linear Regression (A) 1. Characteristics Managerial decisions often are based on the relationship between two or more variables. can be used to develop an equation showing how the variables

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore What is Multiple Linear Regression Several independent variables may influence the change in response variable we are trying to study. When several independent variables are included in the equation, the

More information

Ch 7: Dummy (binary, indicator) variables

Ch 7: Dummy (binary, indicator) variables Ch 7: Dummy (binary, indicator) variables :Examples Dummy variable are used to indicate the presence or absence of a characteristic. For example, define female i 1 if obs i is female 0 otherwise or male

More information

Wooldridge, Introductory Econometrics, 4th ed. Chapter 2: The simple regression model

Wooldridge, Introductory Econometrics, 4th ed. Chapter 2: The simple regression model Wooldridge, Introductory Econometrics, 4th ed. Chapter 2: The simple regression model Most of this course will be concerned with use of a regression model: a structure in which one or more explanatory

More information

Binary Logistic Regression

Binary Logistic Regression The coefficients of the multiple regression model are estimated using sample data with k independent variables Estimated (or predicted) value of Y Estimated intercept Estimated slope coefficients Ŷ = b

More information

Regression Analysis with Cross-Sectional Data

Regression Analysis with Cross-Sectional Data 89782_02_c02_p023-072.qxd 5/25/05 11:46 AM Page 23 PART 1 Regression Analysis with Cross-Sectional Data P art 1 of the text covers regression analysis with cross-sectional data. It builds upon a solid

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

Chapter 13: Dummy and Interaction Variables

Chapter 13: Dummy and Interaction Variables Chapter 13: Dummy and eraction Variables Chapter 13 Outline Preliminary Mathematics: Averages and Regressions Including Only a Constant An Example: Discrimination in Academia o Average Salaries o Dummy

More information

1 Linear Regression Analysis The Mincer Wage Equation Data Econometric Model Estimation... 11

1 Linear Regression Analysis The Mincer Wage Equation Data Econometric Model Estimation... 11 Econ 495 - Econometric Review 1 Contents 1 Linear Regression Analysis 4 1.1 The Mincer Wage Equation................. 4 1.2 Data............................. 6 1.3 Econometric Model.....................

More information

Marketing Research Session 10 Hypothesis Testing with Simple Random samples (Chapter 12)

Marketing Research Session 10 Hypothesis Testing with Simple Random samples (Chapter 12) Marketing Research Session 10 Hypothesis Testing with Simple Random samples (Chapter 12) Remember: Z.05 = 1.645, Z.01 = 2.33 We will only cover one-sided hypothesis testing (cases 12.3, 12.4.2, 12.5.2,

More information

Universidad Carlos III de Madrid Econometría Nonlinear Regression Functions Problem Set 8

Universidad Carlos III de Madrid Econometría Nonlinear Regression Functions Problem Set 8 Universidad Carlos III de Madrid Econometría Nonlinear Regression Functions Problem Set 8 1. The sales of a company amount to 196 millions of dollars in 2009 and increased up to 198 millions in 2010. (a)

More information

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0

2) For a normal distribution, the skewness and kurtosis measures are as follows: A) 1.96 and 4 B) 1 and 2 C) 0 and 3 D) 0 and 0 Introduction to Econometrics Midterm April 26, 2011 Name Student ID MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. (5,000 credit for each correct

More information

Applied Quantitative Methods II

Applied Quantitative Methods II Applied Quantitative Methods II Lecture 4: OLS and Statistics revision Klára Kaĺıšková Klára Kaĺıšková AQM II - Lecture 4 VŠE, SS 2016/17 1 / 68 Outline 1 Econometric analysis Properties of an estimator

More information

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points

University of California at Berkeley Fall Introductory Applied Econometrics Final examination. Scores add up to 125 points EEP 118 / IAS 118 Elisabeth Sadoulet and Kelly Jones University of California at Berkeley Fall 2008 Introductory Applied Econometrics Final examination Scores add up to 125 points Your name: SID: 1 1.

More information

4. Nonlinear regression functions

4. Nonlinear regression functions 4. Nonlinear regression functions Up to now: Population regression function was assumed to be linear The slope(s) of the population regression function is (are) constant The effect on Y of a unit-change

More information

Statistical Inference. Part IV. Statistical Inference

Statistical Inference. Part IV. Statistical Inference Part IV Statistical Inference As of Oct 5, 2017 Sampling Distributions of the OLS Estimator 1 Statistical Inference Sampling Distributions of the OLS Estimator Testing Against One-Sided Alternatives Two-Sided

More information

Multiple Regression: Inference

Multiple Regression: Inference Multiple Regression: Inference The t-test: is ˆ j big and precise enough? We test the null hypothesis: H 0 : β j =0; i.e. test that x j has no effect on y once the other explanatory variables are controlled

More information

Econ 444, class 11. Robert de Jong 1. Monday November 6. Ohio State University. Econ 444, Wednesday November 1, class Department of Economics

Econ 444, class 11. Robert de Jong 1. Monday November 6. Ohio State University. Econ 444, Wednesday November 1, class Department of Economics Econ 444, class 11 Robert de Jong 1 1 Department of Economics Ohio State University Monday November 6 Monday November 6 1 Exercise for today 2 New material: 1 dummy variables 2 multicollinearity Exercise

More information

1 Independent Practice: Hypothesis tests for one parameter:

1 Independent Practice: Hypothesis tests for one parameter: 1 Independent Practice: Hypothesis tests for one parameter: Data from the Indian DHS survey from 2006 includes a measure of autonomy of the women surveyed (a scale from 0-10, 10 being the most autonomous)

More information

CHAPTER 5 LINEAR REGRESSION AND CORRELATION

CHAPTER 5 LINEAR REGRESSION AND CORRELATION CHAPTER 5 LINEAR REGRESSION AND CORRELATION Expected Outcomes Able to use simple and multiple linear regression analysis, and correlation. Able to conduct hypothesis testing for simple and multiple linear

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

Sociology Research Statistics I Final Exam Answer Key December 15, 1993

Sociology Research Statistics I Final Exam Answer Key December 15, 1993 Sociology 592 - Research Statistics I Final Exam Answer Key December 15, 1993 Where appropriate, show your work - partial credit may be given. (On the other hand, don't waste a lot of time on excess verbiage.)

More information

Chapter 3 Multiple Regression Complete Example

Chapter 3 Multiple Regression Complete Example Department of Quantitative Methods & Information Systems ECON 504 Chapter 3 Multiple Regression Complete Example Spring 2013 Dr. Mohammad Zainal Review Goals After completing this lecture, you should be

More information

Eco 391, J. Sandford, spring 2013 April 5, Midterm 3 4/5/2013

Eco 391, J. Sandford, spring 2013 April 5, Midterm 3 4/5/2013 Midterm 3 4/5/2013 Instructions: You may use a calculator, and one sheet of notes. You will never be penalized for showing work, but if what is asked for can be computed directly, points awarded will depend

More information

Lecture 7: OLS with qualitative information

Lecture 7: OLS with qualitative information Lecture 7: OLS with qualitative information Dummy variables Dummy variable: an indicator that says whether a particular observation is in a category or not Like a light switch: on or off Most useful values:

More information

Sociology 593 Exam 1 Answer Key February 17, 1995

Sociology 593 Exam 1 Answer Key February 17, 1995 Sociology 593 Exam 1 Answer Key February 17, 1995 I. True-False. (5 points) Indicate whether the following statements are true or false. If false, briefly explain why. 1. A researcher regressed Y on. When

More information

Introductory Econometrics Exercises for tutorials (Fall 2014)

Introductory Econometrics Exercises for tutorials (Fall 2014) Introductory Econometrics Exercises for tutorials (Fall 2014) Dept. of Econometrics, Uni. of Economics, Prague, zouharj@vse.cz September 23, 2014 Tutorial 1: Review of basic statistical concepts Exercise

More information

In order to carry out a study on employees wages, a company collects information from its 500 employees 1 as follows:

In order to carry out a study on employees wages, a company collects information from its 500 employees 1 as follows: INTRODUCTORY ECONOMETRICS Dpt of Econometrics & Statistics (EA3) University of the Basque Country UPV/EHU OCW Self Evaluation answers Time: 21/2 hours SURNAME: NAME: ID#: Specific competences to be evaluated

More information

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Student Lecture Notes 7- Chapter Goals QM353: Business Statistics Chapter 7 Multiple Regression Analysis and Model Building After completing this chapter, you should be able to: Explain model

More information

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2.

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2. Updated: November 17, 2011 Lecturer: Thilo Klein Contact: tk375@cam.ac.uk Contest Quiz 3 Question Sheet In this quiz we will review concepts of linear regression covered in lecture 2. NOTE: Please round

More information

Solutions to Exercises in Chapter 9

Solutions to Exercises in Chapter 9 in 9. (a) When a GPA is increased by one unit, and other variables are held constant, average starting salary will increase by the amount $643. Students who take econometrics will have a starting salary

More information

[ ESS ESS ] / 2 [ ] / ,019.6 / Lab 10 Key. Regression Analysis: wage versus yrsed, ex

[ ESS ESS ] / 2 [ ] / ,019.6 / Lab 10 Key. Regression Analysis: wage versus yrsed, ex Lab 1 Key Regression Analysis: wage versus yrsed, ex wage = - 4.78 + 1.46 yrsed +.126 ex Constant -4.78 2.146-2.23.26 yrsed 1.4623.153 9.73. ex.12635.2739 4.61. S = 8.9851 R-Sq = 11.9% R-Sq(adj) = 11.7%

More information

ECON 497 Midterm Spring

ECON 497 Midterm Spring ECON 497 Midterm Spring 2009 1 ECON 497: Economic Research and Forecasting Name: Spring 2009 Bellas Midterm You have three hours and twenty minutes to complete this exam. Answer all questions and explain

More information

Answer Key. 9.1 Scatter Plots and Linear Correlation. Chapter 9 Regression and Correlation. CK-12 Advanced Probability and Statistics Concepts 1

Answer Key. 9.1 Scatter Plots and Linear Correlation. Chapter 9 Regression and Correlation. CK-12 Advanced Probability and Statistics Concepts 1 9.1 Scatter Plots and Linear Correlation Answers 1. A high school psychologist wants to conduct a survey to answer the question: Is there a relationship between a student s athletic ability and his/her

More information

Chapter 4. Regression Models. Learning Objectives

Chapter 4. Regression Models. Learning Objectives Chapter 4 Regression Models To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian Peterson Learning Objectives After completing

More information

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity R.G. Pierse 1 Omitted Variables Suppose that the true model is Y i β 1 + β X i + β 3 X 3i + u i, i 1,, n (1.1) where β 3 0 but that the

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

CENSORED DATA AND CENSORED NORMAL REGRESSION

CENSORED DATA AND CENSORED NORMAL REGRESSION CENSORED DATA AND CENSORED NORMAL REGRESSION Data censoring comes in many forms: binary censoring, interval censoring, and top coding are the most common. They all start with an underlying linear model

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Question 1 carries a weight of 25%; Question 2 carries 20%; Question 3 carries 20%; Question 4 carries 35%.

Question 1 carries a weight of 25%; Question 2 carries 20%; Question 3 carries 20%; Question 4 carries 35%. UNIVERSITY OF EAST ANGLIA School of Economics Main Series PGT Examination 017-18 ECONOMETRIC METHODS ECO-7000A Time allowed: hours Answer ALL FOUR Questions. Question 1 carries a weight of 5%; Question

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Markus Haas LMU München Summer term 2011 15. Mai 2011 The Simple Linear Regression Model Considering variables x and y in a specific population (e.g., years of education and wage

More information

Trendlines Simple Linear Regression Multiple Linear Regression Systematic Model Building Practical Issues

Trendlines Simple Linear Regression Multiple Linear Regression Systematic Model Building Practical Issues Trendlines Simple Linear Regression Multiple Linear Regression Systematic Model Building Practical Issues Overfitting Categorical Variables Interaction Terms Non-linear Terms Linear Logarithmic y = a +

More information

Econometrics -- Final Exam (Sample)

Econometrics -- Final Exam (Sample) Econometrics -- Final Exam (Sample) 1) The sample regression line estimated by OLS A) has an intercept that is equal to zero. B) is the same as the population regression line. C) cannot have negative and

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS 1a) The model is cw i = β 0 + β 1 el i + ɛ i, where cw i is the weight of the ith chick, el i the length of the egg from which it hatched, and ɛ i

More information

1 A Non-technical Introduction to Regression

1 A Non-technical Introduction to Regression 1 A Non-technical Introduction to Regression Chapters 1 and Chapter 2 of the textbook are reviews of material you should know from your previous study (e.g. in your second year course). They cover, in

More information

Chapter 14 Multiple Regression Analysis

Chapter 14 Multiple Regression Analysis Chapter 14 Multiple Regression Analysis 1. a. Multiple regression equation b. the Y-intercept c. $374,748 found by Y ˆ = 64,1 +.394(796,) + 9.6(694) 11,6(6.) (LO 1) 2. a. Multiple regression equation b.

More information

Multiple Regression. Peerapat Wongchaiwat, Ph.D.

Multiple Regression. Peerapat Wongchaiwat, Ph.D. Peerapat Wongchaiwat, Ph.D. wongchaiwat@hotmail.com The Multiple Regression Model Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X i ) Multiple Regression Model

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College University at Albany PAD 705 Handout: Suggested Review Problems from Pindyck & Rubinfeld Original prepared by Professor Suzanne Cooper John F. Kennedy School of Government, Harvard

More information

Multiple Regression Analysis: Further Issues

Multiple Regression Analysis: Further Issues Multiple Regression Analysis: Further Issues Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) MLR: Further Issues 1 / 36 Effects of Data Scaling on OLS Statistics Effects

More information

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima Applied Statistics Lecturer: Serena Arima Hypothesis testing for the linear model Under the Gauss-Markov assumptions and the normality of the error terms, we saw that β N(β, σ 2 (X X ) 1 ) and hence s

More information

Chapter 13. Multiple Regression and Model Building

Chapter 13. Multiple Regression and Model Building Chapter 13 Multiple Regression and Model Building Multiple Regression Models The General Multiple Regression Model y x x x 0 1 1 2 2... k k y is the dependent variable x, x,..., x 1 2 k the model are the

More information

Statistics and Quantitative Analysis U4320

Statistics and Quantitative Analysis U4320 Statistics and Quantitative Analysis U3 Lecture 13: Explaining Variation Prof. Sharyn O Halloran Explaining Variation: Adjusted R (cont) Definition of Adjusted R So we'd like a measure like R, but one

More information

Chapter 14 Student Lecture Notes 14-1

Chapter 14 Student Lecture Notes 14-1 Chapter 14 Student Lecture Notes 14-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 14 Multiple Regression Analysis and Model Building Chap 14-1 Chapter Goals After completing this

More information

Multiple Regression Analysis. Part III. Multiple Regression Analysis

Multiple Regression Analysis. Part III. Multiple Regression Analysis Part III Multiple Regression Analysis As of Sep 26, 2017 1 Multiple Regression Analysis Estimation Matrix form Goodness-of-Fit R-square Adjusted R-square Expected values of the OLS estimators Irrelevant

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 8

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 8 Introduction to Econometrics (3 rd Updated Edition) by James H. Stock and Mark W. Watson Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 8 (This version August 7, 04) Stock/Watson - Introduction

More information

The general linear regression with k explanatory variables is just an extension of the simple regression as follows

The general linear regression with k explanatory variables is just an extension of the simple regression as follows 3. Multiple Regression Analysis The general linear regression with k explanatory variables is just an extension of the simple regression as follows (1) y i = β 0 + β 1 x i1 + + β k x ik + u i. Because

More information